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Abstract 

We consider an analog of the Penrose transform for S 0 (I ; n), give for it an explicit inversion 
formula and connect it with the Radon transform on the sphera. 
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The usual construction of twistors and the Penrose transform are connected with SU (2; 2). 
Here we will develop twistor constructions for S 0 (1; n) with the focus on explicit formulas. 
There are several multidimensional generalizations of the Penrose transform, but analogs 
of explicit formulas which we consider here were known only for SU (p; 4) [GHl] . As a 
consequence of these results we obtain that the Radon transform of functions on IF!” which 
are extendible on the conformal compactification [WC” admits a holomorphic extension up 
to a Penrose transform. It is possible to connect another extension of the Radon transform 
with the projective compactification. The real version of these constructions was considered 
in [G2,G3]. 

Geometrical picture. Let @PJ’ be the projective space with homogeneous coordinates 

z=(zo, Zl,..., z,,) and Qa: be the quadric 

O(z) = (Zo)2 - (Z,)2 - ..’ - (Z,)2 

=c E;(z.;)2 = 0. to = 1, e; = -1, i > 0. (1) 
O<i<n _- 

Let QR be the intersection of &a: with the real projective space [WP”: Ox = 0, x E IWP”. 

The quadric Qw can be identified with the sphera S’r-’ c F!“. Let 
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The group SO (1; n) (in the representation corresponding to the form 0~) acts transitively 
on Qlw and X. Relative to this action, X is a pseudo-Hermitian symmetric space 

x = SO(1; n)/SO(l; n - 2) x SO(2). (2) 

We will denote ( , ) the bilinear form, corresponding to the quadratic form Oz. Then 

(z, tz) # 0, z 6 CP; (Z, Z) # 0, z E Q@. (3) 

Dual geometric picture. We will consider the manifold M of generic hyperplane sections 
of Q. Let us denote by CC the section of Q by the hyperplane ({, z) = 0. Then M is 
defined in @Pp by the condition 05 # 0 or we can put 

??y = 1. (4) 

If { = 4 + iv, then (4) is equivalent to 

??t - 07 = 1, ({, v) = 0. (4a) 

The manifold M, dime M = II, is a pseudo-Hermitian symmetric manifold 

M = SO@; C)/SO(n - 1; C), 

which is also a Stein manifold. 
Let us consider the submanijZd .f c M of such < that 

es n Qw = m 

as a dual object to X. Then under condition (4) X is defined [W] by the condition 

??????0, co ’ 0. (5) 

To prove (5) it is convenient to use SO (1; n)-invariance and to consider canonical represen- 
tatives of <. Thus X parametrizes compact complex cycles (quadrics) of the codimension 
1 inside X. 

Inside X there are several remarkable (real) homogeneous submanifolds. First, in the 
intersection with KY+’ we have the Riemann symmetric manifold MR - the hyperboloid 
(one of two sheets): 

O[= 1, to > 0, f E KY+]. 

It is one of the SO ( 1; n)-orbits and we can interpret the symmetric space M as a complex- 
ification of the symmetric space MR. 

The manifold M includes another real forms and between them the compact one - the 
sphera S’ : 

00 = fij = 0, j > 0, (40)~ + (~IY + ... + (7j,12 = 1. 

The inclusion M in the projective space brings the identitication of antipodal points < and 
-[. The intersection X fl Sn coincides with the semisphera ST where 60 > 0. All SO (1; n)- 
orbits in X are intersecting ST. They are parametrized by the invariant a = 04, 0 < a 5 1. 
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For a = 1 the intersection is one point and the orbit is MR, for other a the (real) dimension 
of the intersection is equal to n - 1. On the boundary of 2 there is the orbit n(x) - the 
edge of J? : 

6 =o, ??q = -1. 

It is the pseudo-Riemannian symmetric space S 0 (1; n)/S 0 ( 1; n - 1) - the hyperboloid of 
one sheet. The real dimension n of Q(x) (and Mn) coincides with the complex dimension 
of _%. For 0 < a < 1 the dimension of orbits is equal to 2n - 1. 

Now we will continue to investigate the boundary of _? where ??t = 0. The manifold _% 
has a structure of a tube. We already had considered the edge Sz (2). The other part of the 
boundary is fibering on complex components. They will be half-planes 

I(a, p) = (( = A 0 + ip, Jh 1 0, 

where u E lP+‘, ??a = 0, au > 0, p E Q(x), (a, p) = 0). (6) 

Of course 7 will be conserved if we were to multiply 0 by a positive constant or to add to p 
a multiple of 0. Thus % is an S 0 ( 1; n)-invariant Stein manifold which is inhomogeneous. 

In our analytic constructions the Stein manifold 

x = {(z, 0; z E x, t E x, ({, z) = 01 (7) 

will play an important role. There is the natural fibering 

n:X+X 

whose fibers are contractible. 
Let us imbed the space CPP as a quadric Q’ c CP:“, {’ = (I, m+t): 

Q- + (Gl+t)* = 0; { H (I, in{). 

The image of M on Q’ is defined by the condition In+1 # 0. On Q’ there is a classical 
Cartan domain L which is biholomorphic equivalent to the Lie ball or the future tube - the 
connected component of 

The image of _? will lie in L. So _% admits the natural extension up to the symmetric domain 
L with the group SO(2; n): 2 is obtained from L by removing the intersection with the 
hyperplane t+t = 0. The extension &’ gives the compactifications of the hyperboloids 
MR and Q(X). 

The Penrose transform. We will need some invariant differential forms. Usually we will 
use for writing them determinants in which some columns can be l-forms. Then for the 
computation of such a determinant we will take the exterior products of 1 -forms. As a result 
the determinant of a matrix with identical columns of 1 -forms may not be equal to zero. We 
will also denote the determinant of a matrix (at, . . , a,) through [at, . . . , a,]. If a column 
4 (of l-forms) repeats r times we will write $lrr. 
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In P” we consider the Leray n-form 

w,(z) = det(z, dz, . . , dz) = [z, dzl”)] = C (-l)jzj A dzi. 
Oij5n i#j 

In this matrix the column dz repeats n times. 
On the quadric Q we will use the (n - l)-form 

we(Z) = [u, z, dz(-‘)l 
(u, z) ’ 

??z = 0, (u, z) # 0. 

29 

The restriction of this form on Q is independent of a choice of the element u. It is possible 
to check directly and also it is a consequence of the fact that this form is a residue of a 
closed form (with a simple pole): 

@?I (z) 
WQ = cResQ-. 

??Z 

As the element u we can choose, for example, u = ??Z, or on X we can take u = z. 
On the intersection of the quadric and a hyperplane Lc, we will work with the closed 

(n - 2)-form 

[u, V, z, dzl”-2)l 

oQ4 = (u, 2) (5‘, u) ’ 
??z=o, (t, z) =o, (u,z) #O, (t> u) #O. 

(9) 

This form on Cc is independent of u, v (we can take v = ET> and 

Let us define now the generalized Penrose transform for (n -2)-dimensional %cohomology 
in X with coefficients in the line bundle 0(--n + 2) : Hcnp2)(X, 0(-n + 2)). We will 
use the Dolbeault cohomology and consider a-closed (0, y1 - 2)-forms ~(2, 2; dZ) on X, 
which are homogeneous of the degree --n + 2 in z (it means just that we take coefficients 
in 0(-n)). We call the Penrose transfomz of q the integral of (o on the section Cc : 

The integrand is an (n - 2, n - 2)-form in homogeneous coordinates which can be pushed 
down on the cycle ,Cc of the complex dimension n - 2 in X ((9 - 2)-quadric). The result 
G(c) is a section of the line bundle 0(-l) on X (homogeneous of the degree -1). It is 
possible to verify by the direct differentiation that 

0 $ &-) = 0. ( > (11) 

The basic fact is: 
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Theorem. The Penrose transform determines an isomorphism between H(n-2)(X, (7-n)) 
and the space qf (holomorphic) sections qf O(- 1) on X satisfying the equation 

0 $ F((-) =o. ( > 
In regards to the injectivity it is evident that a-exact forms transform in zero. It is nontrivial 

that the kernel reduces to such forms and we have only the trivial kernel in the cohomology. 
It is possible to prove using one of several ways which were developed for the usual Penrose 
transform (e.g., [GHl]) but we will not consider it here. We will focus on the proof of the 
surjectivity which includes some explicit formulas. 

The inverse Penrose transform. As the first step of the inversion we consider the form 

KF(z, t; d5) = 
[DF, (-, d<l”-‘)I 

(C, z)“-’ ’ 

D=tz-i- z E x, 2‘ E x 
(12) 

So K is a differential operator of the first order out of sections of 0(-l) on X to differ- 
ential forms of the degree n - 1 on X depending on z E X as parameters (all objects are 
holomorphic). The crucial technical fact is: 

Proposition 1. The form K F for solutions qf (11 a) is closed, 

This proposition was proved in [G2] by a direct computation. The form K F has on the 
submanifold (z, {) = 0 a pole of the order IZ - 1. Let us use [GH2] as a template for the 
computation of the residue form for multiple poles: 

CF(z, r, p; dt, dF) 

= Rest,, +oKF(z, <; dS‘) 
1 an-2 

=-- 
(n - 2)! ahn-2 

]dh1k’-‘KF(z, C + Q; d(5 + Q)]]A=o, (~3 z) # 0. 

(13) 

The form C is a holomorphic form on a manifold X fibering over X (7).The direct compu- 
tation gives 

(n - I)! 

= (w, zy-’ 

n-2-k 

F(t) 

+ (n - 2)(~, zF2 c ’ O<k<n_3 k!(n - 3 - k) 

n-3-k 

x [a/a{, t, p, ddkl, dr(“-2-k11 F(C), 

(C, z) = 0, (II. z) # 0. 
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Let us recall that dpIkl means that we repeat k times the column dp.This formula may 
seem inconvenient but it has a clear structure indeed. 

The manifold X is the manifold of such triples (z, [, /A) that 

It is a Stein manifold which admits the natural fibering over X with contractible fibers 

#0:X+x (14) 

and i F is a holomorphic closed (n - 2)-form on X with differentials along fibers of p only. 
This form is closed as the residue of a closed form. It is essential that we define the residue 
of holomorphic forms on X with multiple poles as some forms on an extended manifold X 
fibering over X. 

Let us now take the last step of the inversion. Let f be a section of the fibering (14). We 

Put 

KF(z, 2; dZ) = (iF~r)(o~n-2). (15) 

Thus we restrict iF on a (real) section r (such sections exist since fibers of (13) are 
contractible), obtain an (n - 2)-form on X and take its (0, n - 2)-part. The result will 
be &closed form. Let us recall that the manifold X is a Stein manifold but the mani- 
fold X is pseudo-concave one. Different choices of the section r give forms from the 
same cohomology class. Now we can prove the result about the inversion of the Penrose 
transform. 

Proposition 2. The form 

$0 -CK($), c = 
(-l)n+1(27ri)n-2 

n-l ’ 
(16) 

is 8 -exact. 

To prove this fact we will need to compute the Penrose transform of the form K F and we 
will show that it is equal 1 /c F. Then the form (16) belongs to the kernel of the Penrose 
transform and therefore it is a-exact. 

So we need to integrate the form K F on CC,, , co E _%. In the computation we can select the 
section r by a most convenient way and moreover we can do it only in a small neighborhood 
of the C,O. So let us take the section in such a way that on Lc,o we have 

C(z) = CO, /A(z) = ??Z. 

Then we need to keep in i only the term without differentials on { (k = n - 2). It 
will be 

n - 1 
jz12(n-1) F(<‘)[rz, co, t d$-2)l, lz12 = (z, EZ) = lzo12 + ‘. . + IZn+l 12. 
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We need to multiply this form on w~,~o ( we take u = Z, v = of’) and everything reduces 
to the standard integral 

s [z, E(-, Z, d$-*l] A [Z, E& z, dzl+*)] 1 

I<]* IZ]*(n-l)(z, 2) = (2ni)fl-2 ’ 

4 

(17) 

It gives us the value of the constant c. It is convenient that we pick up r in such a way that 
the integrand depends on F trivial. 

Holomorphic cohomology. We will give an interpretation of our formulas on the language 
of holomorphic cohomology [Gl,EGWl,EGW2]. Let us recall that this language gives us 
the ability to describe the analytic cohomology in a holomorphic language (as compared 
with the tech or Dolbeault cohomology which cannot). In our example we consider on X 
complex of holomorphic forms $(z, [, I_L; d[, dp.) with differentials along fibers of (14) 
and with 0(-n +2)-coefficients in z. The differentials in the complex also act along fibers 
(5, ,u). We call the cohomology of this complex by the holomorphic cohomology of X 
[Gl,EGWl ,EGW2]: Hiij(X, 0(-n + 2)). It turns out that the holomorphic cohomology 
of X is canonically isomorphic to the Dolbeault cohomology of X. It is very general result 
which uses only the fact that the fibers of the fibering (14) are contractible. It is possible 
to write the operator from the holomorphic cohomology in the Dolbeault cohomology in a 
very simple and explicit form. Namely the operator on holomorphic forms of a degree k to 
(0, k)-forms: 

1cI F-3 {$Irl’“.k’ (18) 

induces an isomorphism of cohomology. The form i F is just a holomorphic (n - 2)-form 
of considering type and the operator (15) in g F is just a specialization of the operator (18). 

The inverse operator out of the Dolbeault cohomology to the holomorphic cohomology 
can be seldom written in an explicit form. In our case we have just such an exceptional 
situation; the operator 

realizes such isomorphism. Thus the Penrose transform gives a possibility to construct an 
operator from the Dolbeault cohomology to the holomorphic one. Moreover the form c/? (@) 
is the canonical representative in the corresponding class of holomorphic cohomology class. 
Most important property of this form is that as the function of parameters z it is constant 
along the section ,Cc. Let us mention that we have here the holomorphic Hodge theorem in 
the sense of [EGWl]. 

Real forms of the operator ??(a/i3[). If we restrict this operator on different symmet- 
ric spaces in X, we will obtain some classical operators: the restriction on the Riemann 
symmetric space Mn will be the elliptic operator of Laplace-Beltrami ??l(a/a[) and the 
restriction on the pseudo-Riemannian space R (2) will be the wave equation ??(a/ian). Let 
us recall that we consider homogeneous functions (0(- 1)) and it corresponds to an eigen 
value problem. 
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The most important fact is that any soZution ofthe elliptic equation 

33 

can be extended as a holomorphic solution of 

Of course it is natural that solutions of an elliptic equation can be holomorphicaly extended 
in some neighborhoods but here we have the universal neighborhood where all solutions 
can be extended holomorphically. 

The recipe of the extension is very explicit. Using F on Mn we can construct the form 
KF(z, 2; dz) for all z E X. We need only to remark that we can choose a section f using 
only < E MR: for any z E X there is < E MR such that z E fZ{. Using the homogeneity 
of X and MR it is sufficient to verify for one point z. We can see also that using only the 
restriction F on MR we can compute the derivatives in K. The Penrose transform of K F 
with such a section r in (15) will be just the desired extension. 

In fact we do not need to know F on whole A4R for the construction of a section r. 
The consideration of different sections in (15) gives a universal way to solve boundary 
problems: if we can reconstruct i F on a section r through boundary data we can reconstruct 
the solution F. We can reproduce in such a way many classical formulas for solutions of 
boundary problems. 

If we take boundary values on the wedge G’(X) of solutions F on X we obtain solu- 
tions of the wave equation ??(a/a~)F = 0. Such boundary values there exist always in 
hyperfunctions. 

Finally we can consider the joint boundary of MR and G?(X) in &’ as well as the Dirichlet 
data on it. There is a canonical one-to-one correspondence between points of this boundary 
and &R = Sri___ which give a possibility to interpret formula (19) below as the Poisson 
integral, 

Conformal hypetiunctions. It is natural to interpret elements of H(“-2)(X, 0(-n + 2)) 
as hyperfunctions on QR = S”-’ - conformal hype@mctions. Let us construct natural 
imbeddings of functional spaces on QR in the space of conformal hyperfunctions. For 
f E Cco(&R, 0(-n + 2)) = Cco(Sn-t) we define the holomorphic conformal Radon 
transform as 

fcr, = fww-‘~Q(X). < E 2. s (19) 

&a 

The result is a section of O(- 1) on X satisfying to the wave equation (11). Therefore we can 
apply the operator K (12) and its modifications and as a consequence we have the imbedding 

C?(G?R, 0(-n + 2)) + H(“-2)(X, (3(-n + 2)) : f H Cf. (20) 

There is a natural extension of the holomorphic conformal Radon transform on the space 
S’. The crucial point is that a distribution f is boundary values of a cohomology class 
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(hypecfunction) cp if the Penrose transform of cp coincides with the holomorphic conformal 
Radon transfbm of f : 

We already gave the recipe of the construction of such a class for a distribution f. 
For an inversion of the operator (20) let us take boundary values of f, of, C.f for z = 

x E QIW, 5‘ = iv E Q(x). Such boundary values always exist in hyperfunctions but let us 
suppose that they exist in a classical sense. Such a way for x E &R we have the closed 
differential (n - 2)-form 

c.f^(x; in, I-L; idrl, dp), O(V) = -1, (V,X) = 0, (P,X) # 0. 

It was proved in [G2] that for fixed x E QR and for any cycle y in such manifold of (11, p) 
we have 

s cf(x; iv, FL; idv, dw) = c(y)f(x). (21) 

If c(v) # 0 then we can reconstruct f. In [G2,G3] there were considered different kind 
cycles y and computed corresponding coefficients c(v). Using this inversion formula for 
holomorphic conformal Radon transform we can reconstruct boundary values of cohomol- 
ogy classes in distributions or functions if they exist. Let us remark that boundary values 
f^(iq), iv E n(x), will not be odd functions. 

The real conformal Radon transform. We can define on QR = S-’ the real Radon 
transform - integrals on hyperplane sections: 

R,fo!) = 
s 

f (xP((rl, x))%Ax). (22) 

Qrw 

The image of the transform will satisfy the real condition 0(- 1): F(pq) = IpI-l F(q), p E 
rW\O, and the wave equation (11). These conditions completely describe the image. There 
is a simple connection between the real and holomorphic conformal Radon transforms: 

af (VI = &G(b) + ,f^(-in)). (23) 

Concerning the inverse reconstruction, we can remark that f^(<) is the part of the solution 
Rf (q) of the wave equation which is holomorphic in 2. It is possible to use different 
integral formulas for the reconstruction of this projection. If we are interested only in 
boundary values f^(in), it is convenient to remark that 

!(i(p + ~0)) = Rf (p + ~0) * (P + W-l, 

where ??(cr) = 0. (a, p) = 0, p E 1w. Using this representation we can also extend f^ holo- 
morphically in half-planes I(a, p) (6). It is connected with the possibility to interpret the 
restriction Rf on L, = ( (n, 0 ) = 0} as the affine Radon transform using the stereographic 
projection out of the point (T E 9-l [G2,G3]. 
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It is convenient for usual affine Radon transform to modify it in such a way that it will 
be holomorphic on one variable (using the convolution with (p - iO)-‘) [G3]. It gives a 
possibility to write a universal inversion formula for all dimensions (even or odd). We can 
see that in the conformal case it is possible to modify the Radon transform in such a way that 
it will be the holomorphic function of all variables. The basic inversion formula uses the 
holomorphic version of the transform and the corresponding inversion formula is always 
local. Then it is possible to compute boundary values and transform the original formula in 
a formula for the real Radon transform which can be local or not. 

Remark. We considered herecohomology with coefficients in a special line bundle 0(-n+ 
2). There is a standard way to consider other bundles. Let us illustrate it on the example of 
0(-n+ 1). So let (0, n -2)-formcp represent acohomologyclassfrom H(“-2)(X, 0(-n+ 
1)). Then we define its Penrose transform as the vector-function (section of a vector bundle) 
$=(&,...,&)where 

We can check by the direct differentiation that $ satisfies to the following system of differ- 
ential equations of the first order: 

a$ a$k 
‘k% = cjc- Oi j,ksn, 

c E.!3L0 
Ja(j ’ 

co = 1, Ej=--1, j>O. 
O<jin _ 

(25) 

As the direct consequence of this system we obtain that each component of $ satisfies to the 
wave equation (11). It gives a possibility to obtain the inversion formula using the formulas 
which we considered above. So this system is one of the systems of first order associated 
with the wave equations (analogs of the massless equations). Other line bundles on X will 
give other associated systems of the first order. 
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